UDC 621.315 DOI: 10.24411/2658-4255-2020-00006

ОБ ИСПОЛЬЗОВАНИИ ЛЕНТЫ ИЗ АМОРФНОГО СПЛАВА В КАЧЕСТВЕ НАГРЕВАТЕЛЬНОГО ЭЛЕМЕНТА В СИСТЕМАХ ОБОГРЕВА И АНТИОБЛЕДЕНЕНИЯ ДЛЯ АРКТИЧЕСКИХ ТЕРРИТОРИЙ

Д.В. Махнёв¹, К.А. Змиева²

- ¹ Северо-Западный институт управления филиал федерального государственного бюджетного образовательного учреждения высшего образования «Российская академия народного хозяйства и государственной службы при Президенте Российской Федерации», г. Санкт-Петербург, Россия
- ² Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образование «Московский государственный технологический университет «СТАНКИН», г. Москва, Россия

makhnev@gmail.com, kirazmieva@mail.ru

В статье проведен анализ и рассмотрены преимущества использования ленты из аморфного сплава для применения в системах антиобледения и обогрева в условиях арктических территорий.

Ключевые слова: аморфные сплавы, нагревательные элементы, системы обогрева, Арктика, системы антиобледенения.

USE OF AMORPHOUS ALLOY TAPE AS A HEATING ELEMENT IN HEATING AND DE-ICING SYSTEMS FOR ARCTIC TERRITORIES

D.V. Makhnevl, K.A. Zmieva2

- ¹ Russian Presidential Academy of National Economy and Public Administration, Saint Petersburg, Russia
- ² Moscow State University of Technology «STANKIN», Moscow, Russia

The article analyzes and considers the advantages of using amorphous alloy tape for use in de-icing and heating systems in the Arctic territories.

Keywords: amorphous alloys, heating elements, heating systems, Arctic, de-icing systems.

Статья получена: 27.03.2020

Принята к публикации:01.04.2020 Опубликована онлайн: 10.04.2020

Сегодня северные арктические территории являются тем местом, где наиболее передовые и современные высокие технологии находят свое применение. В условиях развития полярных городов, расположенных вдоль северного морского пути, проблемы обеспечения грамотной эксплуатации жилых и промышленных зданий в условиях низких температур становятся особенно актуальными. Одной из задач, требующих решения, является задача разработки эффективных антиобледенительных систем для кровель зданий, предотвращающих скопление снега и наледей как на самой кровле, так и на водоотводящих желобах. (Рис. 1).

В стандартный состав антиобледенительной системы обычно входят:

- Нагревательный кабель. Схема его укладки определяется типом кровельной конструкции и конфигурацией водостока.
- · Силовой электрический кабель (для соединения с сетью 220/380, 50Гц).
- Устройства защиты (отключают контур целиком при утечках свыше 30 mA и при превышении токов нагрузки) [1].
- Устройство управления. Система, реагирующая на сигналы датчиков температуры и влажности и запускающая или приостанавливающая

обогрев в рамках рабочих температур.

В производстве и домашних условиях используется широкое разнообразие нагревательных элементов. Изначально для производства таких элементов использовались металлы и металлические сплавы. Самой распространенной формой для нагревательного элемента считается кабель. За счет своих свойств и относительно низкой стоимости он является очень привлекательным для систем обогрева. Начиная с конца 20 века научно-техническое сообщество всерьез стало изучать возможность использования из инновационного аморфного металлического сплава в качестве нагревательного элемента для внутреннего и внешнего обогрева [2, 3].

Особенностью аморфных сплавов является отсутствие у них дальнего порядка в расположении атомов (трансляционная симметрия). Структура аморфных магнитомягких сплавов характеризуется отсутствием у них в строгой периодичности, присущей кристаллическому строению, в расположении атомов ионов молекул на протяжении сотен и тысяч периодов параметров кристаллической решетки. Считается, что отсутствие дальнего порядка в расположении атомов в аморфном состоянии приводит к изотропии магнитных свойств [1].

Рисунок 1 – Система антиобледенения кровли (пример)..

В аморфных сплавах отсутствуют такие специфические для кристаллических тел дефекты атомной структуры, как дислокации и вакансии, границы зерен и блоков, двойники и дефекты упаковки [4].

Всем аморфным сплавам, независимо от их состава, присущи высокие прочностные свойства, высокое удельное электросопротивление и повышенная стойкость к воздействию облучения (Табл. 1). В зависимости от природы компонентов аморфные сплавы могут обладать прекрасными функциональными свойствами, которыми определяется их практическое использование. Аморфные сплавы – это и магнитно-мягкие материалы, обладающие гистерезисными магнитными свойствами, уровень которых близок для лучших кристаллических магнитно-мягких материалов; это и материалы с высокой прочностью и коррозионной стойкостью; это и материалы с инварными и элинварными

свойствами; это и материалы с особыми электрическими свойствами. Аморфные сплавы уже прочно заняли свою нишу и в производстве, и в применении. Основная масса производимых аморфных сплавов используется в качестве электротехнических материалов для различного рода трансформаторов и других устройств, где они применяются как магнитопроводы. Обладая почти идеальной фазовоструктурной однородностью и высоким удельным электрическим сопротивлением, аморфные сплавы имеют чрезвычайно низкие потери на перемагничивание, что и предопределяет их применение как электротехнических материалов [4].

Сегодня нагревательные элементы на основе аморфной металлической ленты все более и более широко используются в системах обогрева и антиобледенения [5,6,7].

Характеристики аморфной металлической ленты

Таблица 1

Параметры	Значение	Примечания
Толщина ленты	18-25 µм	
Ширина ленты	4-25 мм	
Удельное электрическое сопротивление	1.3-1.5*10-6 Ом*м	
Рабочее напряжение	12- 600 B	
Коррозионная стойкость	Высокая	Благодаря особому составу сплава
Пластичность и гибкость	Высокая	Благодаря особому составу сплава
Площадь прогревания	Высокая	Благодаря широкой поверхности ленты
Тепловая инерция	Низкая	Благодаря низкой массе ленты
Время на разогрев до стабильного состояния	Короткое	Благодаря низкой тепловой инерции
Применение	Системы внутреннего и внешнего обогрева	

Низкая рабочая температура

Теплопередача от любого нагревательного элемента находится в пропорциональной зависимости от площади поверхности и разницы температур между нагревателем и окружающей средой. Чем больше площадь поверхности, тем меньшая разница температур требуется для теплопередачи от нагревателя в окружающую среду. По сравнению с обычным кабелем, применяемым в большинстве нагревателей, лента, за счет относительно большой поверхности, отдает тепло в окружающую среду на низких температурах намного эффективнее. Например, если сравнить два нагревателя, из которых первый – кабельный элемент диаметром 0,5 мм, а второй – аморфная металлическая лента шириной 10 мм. с одинаковой тепловой мощностью, можно заметить, что рабочие температуры значительно разнятся. Температура ленты в 12 раз ниже температуры обычного кабельного элемента [4].

Фактически это означает, что большая площадь теплопередачи ленты позволяет достигать такой же тепловой мощности (как и у стандартного кабеля) при низких рабочих температурах нагревательного элемента.

Эффективность теплопередачи

Сравнение температур аморфной металлической ленты и обычного кабеля одинаковой тепловой мощности было произведено по следующим параметрам:

- 1. Длина ленты/кабеля = 1 метр.
- 2. Толщина ленты = 20 µм.
- 3. Сопротивление сравниваемых элементов = $1,4 \times 10^{-6}$ Ом на метр.
- 4. Коэффициент теплопроводности сравниваемых элементов = = 5.6 Bt/м²°C.
- 5. Разница температур на поверхности ленты/кабеля и окружающего воздуха составляет 100°С.
- 6. Условия охлаждения естественная конвекция.

Таблица 2 Расчет коэффициента разницы температур нагревательного кабеля к ленте

Поперечное сечение, м²·10 ⁻⁶	Диаметр кабеля, м·10 ⁻³	Ширина ленты, m·10 ⁻³	Поверхность теплопереда- чи на едини- цу длины, м²/м·10 ⁻⁶ Кабель	Поверхность теплопере- дачи на единицу дли- ны, м²/м·10 ⁻⁶ Ленты	Коэффициент разницы температур кабеля к ленте ¹
0.0177	0.15	0.885	0.471	1.77	3.76
0.0310	0.20	1.550	0.625	3.10	4.89
0.0490	0.25	2.450	0.785	4.90	6.25
0.0710	0.30	3.550	0.942	7.10	7.54
0.0960	0.35	4.800	1.100	9.60	8.73
0.1260	0.40	6.300	1.260	12.60	10.00
0.1960	0.50	9.800	1.570	19.60	12.47

Под «разницей температур» понимается разница между температурой поверхности нагревателя и температурой воздуха.

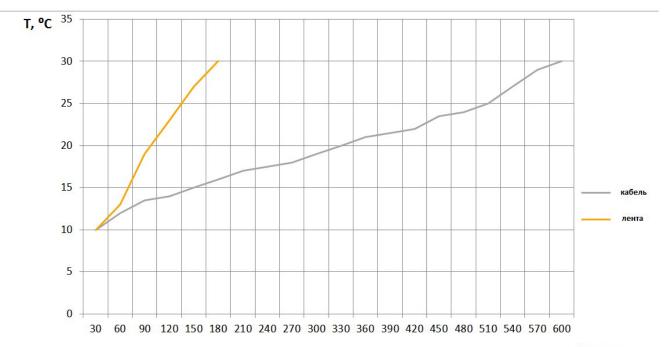
Итоги, полученные из вышеуказанной таблицы:

- 1. Большая площадь теплопередачи ленты производит такую же нагревательную мощность при более низкой температуре, чем кабель.
- 2. Эффективность нагревания ленты значительно больше, чем эффективность нагревания кабеля.

Тепловая инерция

Аморфная металлическая лента имеет очень низкую тепловую инерцию за счет низкой массы ленты. Благодаря такому свойству лента нагревается до 30°С через 3 минуты после включения, в то время как кабель достигает той же температуры через 10 минут работы (что в три раза медленнее) (Рис. 2).

Энергопотребление


Распространение тепла от нагревательного элемента в окружающую среду производится по следующему алгоритму: поступающая энергия нагревает сам нагревательный элемент, а затем электрическую изоляцию, после чего нагревательный элемент греет окружающее пространство.

В каждом случае масса нагреваемой поверхности значительно больше массы нагревательного элемента (ленты

или кабеля). Время выхода на рабочую температуру зависит от массы поверхности и не зависит от массы нагревательного элемента. Это означает, что экономия энергопотребления имеет место быть только в процессе, пока нагревательный элемент достигает определенной температуры [8,9].

Благодаря тому, что аморфная металлическая лента очень тонкая, она обладает очень низкой массой. В результате нагревание до требуемой температуры проходит очень быстро, а потребление электроэнергии по сравнению с обычным кабелем меньше. Кроме того, фактическое электрическое сопротивление кабеля в большинстве случаев намного меньше, чем у аморфной ленты. В результате, требуется кабель большей массы для обеспечения такого же электрического сопротивления (одинаковое электрическое сопротивление обеспечивает одинаковую мощность для сравниваемых нагревательных элементов) [5].

Для того, чтобы понять, сколько требуется энергии для прогрева самого нагревательного элемента, давайте произведем расчет на 1 кВт электроэнергии для аморфной металлической ленты и кабеля по следующим геометрическим параметрам (мощность 220 В) (Табл. 3)

Время, с

Рисунок 2 – График изменения температуры нагревательной ленты и кабеля после включения.

Таблица 3 Параметры сравниваемых нагревательной ленты и кабеля

Аморфная лента	Кабель		
толщина 25 µм ширина 25 мм	диаметр 1 мм		
длина 21.6 м	длина 70 м		
электрическое сопротивление 1.4 x 10 ⁻⁶ Ом*м	электрическое сопротивление 0.54 x 10 ⁻⁶ Ом*м		

Для увеличения температуры кабеля на 2°С требуется электроэнергии в 0,00016 кВт·ч. Масса ленты в таком случае меньше в 4 раза. Это означает, что электроэнергии для нагрева ленты в таких же условиях понадобится 0,00004 кВт·ч (Рис. 3).

Необходимо отметить, что у кабеля больше изолирующего материала, чем у ленты. Это еще больше увеличивает затраты на нагрев кабеля по сравнению с лентой.

Исходя из вышеизложенного, нагревательная лента гораздо более эффективна, чем кабель. Потребление электроэнергии у ленты в 2-4 раза ниже, чем у кабеля. Это дает множество возможностей для экономии электроэнергии при работе нагревателей в цикличном режиме.

Экологичность

Благодаря значительно более низкой рабочей температуре аморфной ленты, в сравнении с кабелем, системы на основе аморфной ленты гораздо более экологичны: пыль на поверхности нагревателей не сгорает, как это происходит с высокотемпературными нагревательными элементами. Более низкая температура означает более здоровое окружение, повышенную безопасность и продолжительную работоспособность.

Измерения силы магнитного поля аморфной металлической ленты показали, что оно крайне низкое [7]. На расстоянии 10 мм от нагревательного элемента сила магнитного поля меньше трети магнитного поля Земли (которая составляет ~420 мГн) и практически полностью растворяется чуть выше.

Безопасность

Технология системы обогрева, в основе которых лежит аморфная металлическая лента, исключает риск каких-либо повреждений поверхностей, к которым или на которые они устанавливаются (в отличие от других систем, работающих на значительно более высоких температурах).

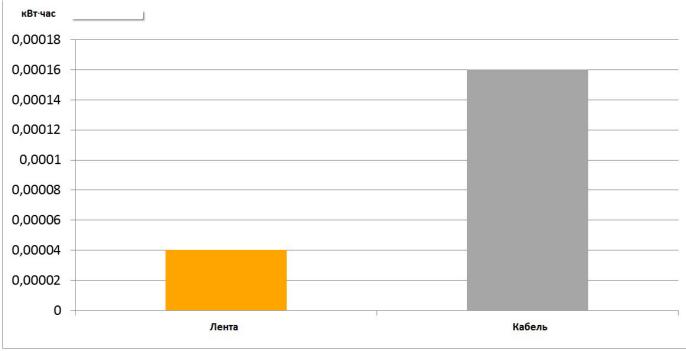


Рисунок 3 – Количество электроэнергии, требуемое нагревательной ленте и кабелю для нагрева на 2°C

Заключения:

- 1. Аморфная металлическая лента может быть использована как низкотемпературный нагревательный элемент.
- 2. Низкотемпературный нагревательный элемент на основе аморфной металлической ленты экологичный и безопасный.
- Аморфная металлическая лента обладает очень низкой тепловой инерцией и достигает стабильного температурного состояния за относительно короткое время.
- 4. Тепловая эффективность ленты значительно выше, чем у кабеля. Большая площадь поверхности теплопередачи ленты позволяет достигать такой же тепловой мощности (как при использовании обычного

- кабеля) на более низких рабочих температурах нагревательного элемента.
- 5. Ультратонкая лента с большой площадью поверхности предотвращает поглощение тепла металлом и делает теплопередачу эффективнее.
- 6. Существенная экономия энергии рассчитывается за счет низкой тепловой инерции и эффективной теплопередачи, особенно в режиме быстрого переключения (вкл/выкл).
- 7. Высокая механическая прочность, низкая температура нагрева и коррозионная устойчивость наделяют ленту высокой степенью надежности, что особенно важно при эксплуатации антиобледенительных систем в экстремальных условиях арктических территорий.

Список литературы:

- Павленко Т.П., Токарь М.Н. Анализ и исследование свойств аморфных сплавов // Электротехника и электромеханика. 2013. № 5. С. 45-47 Статья в журнале.
- 2. Patent № 5,641,421, Jun. 24, 1997 (United States Patent) «Amorphous metallic alloy electrical heater systems»: [https://patents.google.com/patent/US5641421A/en]
- 3. Patent № EP 0 808 078 B1, 04.10.2001 (European Patent Office) «Amorphous metallic alloy electrical heater system»: [https://data.epo.org/publication-server/document?cc=EP&pn=08080 78&ki=B1&lg=en]
- 4. Могильников П.С. Закономерности влияния процессов структурной релаксации на магнитные свойства и механическое поведение аморфных сплавов на основе кобальта с очень низкой магнитострикцией (\(\lambda\)s < 10-7\): диссертация канд. физико-математических наук. 01.04.07/ Павел Сергеевич Могильников. Москва, 2016. 202с.

- 5. Brook-Levinson E.T., Geller M.A Amorphous metallic alloy ribbons heating element // The optimization of composition, structure and properties of metals, oxides, composites, nanoand amorphous materials. 2003. p. 80-88.
- Geller M. Electric wires and ribbon heating elements for under floor heating: [http://www. orionecotech.com/pdf/Wire-ribbon%20energy%20 consumption.pdf]
- 7. Test Report Nº: 221968 EN 62233, Nemko testing laboratory. 2008: [http://2.ahtrussia.z8.ru/wp-content/uploads/2015/07/Nemko_2.png]
- 8. Измайлов С.В., Шульга А.Р., Шульга Р.Н., Змиева К.А. Новые подходы к созданию энергоинформационных распределительных сетей // Электротехника. № 2. 2014. С. 39-43.
- 9. Змиева К.А. Применение автоматических компенсаторов реактивной мощности для повышения энергоэффективности управления электроприводом металлообрабатывающих станков // Электротехника. 2009. № 11. С. 26-32.

References:

- 1. Pavlenko T.P., Tokar' M.N. Analiz i issledovanie svojstv amorfnyh splavov // Elektrotekhnika i elektromekhanika. 2013. № 5. S. 45-47.
- 2. Patent № 5,641,421, Jun. 24, 1997 (United States Patent) «Amorphous metallic alloy electrical heater systems»: [https://patents.google.com/patent/US5641421A/en]
- 3. Patent № EP 0 808 078 Bl, 04.10.2001 (European Patent Office) «Amorphous metallic alloy electrical heater system»: [https://data.epo.org/© D.V. Makhnev, K.A. Zmieva
- publication-server/document?cc=EP&pn=08080 78&ki=B1&lg=en]
- 4. Mogil'nikov P.S. Zakonomernosti vliyaniya processov strukturnoj relaksacii na magnitnye svojstva i mekhanicheskoe povedenie amorfnyh splavov na osnove kobal'ta s ochen' nizkoj magnitostrikciej (λs < 10-7): dissertaciya kand. fiziko-matematicheskih nauk. 01.04.07 / Pavel Sergeevich Mogil'nikov. Moskva, 2016. 202s.</p>
- 5. Brook-Levinson E.T., Geller M.A Amorphous

- metallic alloy ribbons heating element // The optimization of composition, structure and properties of metals, oxides, composites, nanoand amorphous materials. 2003. p. 80-88.
- 6. Geller M. Electric wires and ribbon heating elements for under floor heating: [http://www.orionecotech.com/pdf/Wire-ribbon%20energy%20 consumption.pdf]
- 7. Test Report Nº: 221968 EN 62233, Nemko testing laboratory. 2008: [http://2.ahtrussia.z8.ru/wp-content/uploads/2015/07/Nemko_2.png]
- 8. Izmailov S.V., ShulGa R.N., ShulGa A.R., Zmieva K.A. New approaches to the creation of energy information distribution networks // Russian Electrical Engineering. 2014. T. 85. № 2. C. 100-104.
- 9. Zmieva K.A. Methods for using automatic compensators for reactive power to increase power efficiency of electric drive control in metal removal machine tools // Russian Electrical Engineering. 2009. T. 80. № 11. C. 604-609.